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First-Order Model of Symmetrical Six-Port
Microstrip Ring Coupler

S.P.Yeoand C. L. Lau

Abstract —This paper describes, in brief, how the simple eigenmode
approach can be utilized to develop a first-order model that yields
explicit ready-to-use formulas for predicting the performance character-
istics of a symmetrical six-port microstrip ring coupler. Prototype tests
conducted over the 2—-5 GHz frequency range show the agreement
between the predicted and measured values of the coupler’s scattering
coefficients to be within + 0.05 for magnitude and +10° for phase.

I. INTRODUCTION

The symmetrical six-port junction (Fig. 1) has over the past
few years been attracting the attention of various researchers.
Riblet er al. [1] designed one for use as a five-way equal power
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Fig. 1. Symmetrical six-port microstrip ring coupler.

divider, while Judah et al. [2] and Yeo et al. [3] showed how it
could also be utilized in a six-port reflectometer setup.

Thus far, satisfactory models to predict the characteristics of
the stripline [1] and waveguide [4] versions of the symmetrical
six-port junction have been reported in the literature. Our
objective in this paper, therefore, is to extend the investigation
to include the analysis of the microstrip version. Actually, a
model of one such microstrip coupler has already been put
forward by Judah et al. [2]; however, their circuit topology is
more complicated than that of Fig. 1 because they inserted an
additional node at the hub of the structure (thereby rendering it,
for purposes of analysis, effectively a seven-port instead of a
six-port). In contrast, we chose to retain the original simplicity
of the ring layout in Fig. 1 so as to obviate the necessity of
performing a seven-port to six-port circuit reduction (as Judah
et al. [2] had to do).

Il. THEORY

There are two approaches that we can take in the formulation
of our model: eigenmode or noneigenmode. The latter has the
problem of yielding rather long and unwieldy expressions, al-
though, as one referee has pointed out, it does offer flexibility
for studying nonsymmetries in the circuit. The method used in
this paper is based on the eigenmode approach since this, as has
been demonstrated in previous analyses of the symmetrical
N-port junctions [4]-[6], yields simple explicit formulas that can
be readily used for design work.

Assuming that the curvature of the central ring line can be
ignored (as Cullen er al. [7} and Judah et al. [2] did in their
analyses), we are able to represent the circuit connections be-
tween any three consecutive ports k —1,k,k +1 by the equiva-
lent transmission-line model of Fig. 2, where, for the mth
eigenmode,

mm
Uk=Uk_1eXp(~]T)

m
—r.L)

5 )
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Fig. 2. Equivalent transmission-line model for any three consecutive
ports k —1,k, k +1.

An analysis of the circuit of Fig. 2 then yields the following
expressions for the current components at node k:

. iYou, mm p 5
Te = sin Bl [exp(;—,j—)—cosﬁ ] @
o JYour .mm ,

T Sin Bl [exp ( g 3 ) cos Bl ] S
i% = Bo. 4)

The combination of (2)-(4) thus permits us to derive the ei-
genadmittance (for the mth eigenmode) looking into any of the

six ports:
A el i r|+B 5
" smBl'[c S(T)_COSB }+ ' ®)

(Expressions for the phase constant 8 of the central ring line,
the length correction Al =[—/" for the distance between adja-
cent ports, the shunt susceptance jB present at the junction, the
turns ratio #:1 of the transformer, and the characteristic admit-
tances Y, and Y of the central ring line and the six arm lines,
respectively, can be found in standard references, such as [8].)
From (5) we can compute four distinct eigenadmittances,
YO,Yl,YZ,Y (corresponding to the m =0, 1,2,3 eigenmodes sup-
ported by the symmetrical six-port structure of Fig. 1), and
thereafter obtain the scattering matrix of the coupler:

(7 a & 7 8 a
a vy a 8 T b
0 ¢ v a 6 T
§= T 6 a v a 6 (0
6 7 & a vy «a
K 0 T 6 « Y |
via the following formulas [1]:
1
y=g(/\o+2/\1+2)\2+)t3) (7
1
7=g()\0—2/\1+2)\2—)t3) (8)
1
04:6()‘0‘*')‘1“)‘2_/\3) )
1
3=g()t0—‘)tl—/\2+)\3) (10)
where the eigenreflection coefficients A, are given by
Y -Y,
m=——= .form=0,1,2,3. (11)
Yi+Y,

(As an aside, we would like to mention that, apart from the
computation of the coupler’s scattering coefficients, another

1667

magnitude

0.6 o —

02 O Teen2 oo
/
o\ _ T o .
[+]
o~ o o [¢) ;
0 ——
3 [ 5
frequency (GHz)
(a)
' frequency (GHz)

3 4 5

‘50 L

-109
-150

-2004

250 T phase difference (deg)

(b)

Fig. 3. Performance of prototype coupler #1: w=50 mm, /=
17.5 mm, w’ = 6.4 mm, A= 2.3 mm, ¢, = 2.5. (a) Magnitudes of coupler’s
scattering coefficients:

|a]: ——~— theory, VVV experiment;
18] =----- theory, + + + experiment;
I7l: theory, X X X experiment;
|yl -— -~ theory, ¢« ¢ experiment.

(b) Phase differences between coupler’s transmission coefficients:
arg(8 /a): --- theory, + + + experiment;
arg(7 /a): —— theory, X X X experiment.

possible application of the eigenadmittances generated from (5)
is in the computation of the coupler’s equivalent admittance [9]
using the formula derived by Riblet er al. in [1].)

III. ResuLts

The model developed in Section II (with dispersion effect [8]
taken into account) is then implemented as a self-contained
software package (written in Turbo Pascal Version 5.0)! for
running on the IBM PC. Fig. 3 presents a typical plot of the
frequency variations of v, «, 8, and 7 for the following parame-
ter settings: w = 5.0 mm, w’ = 6.4 mm, / =17.5 mm, & =23 mm,
and e, =2.5. To verify the accuracy of the computed results, we
fabricated prototype #1 (using the aforementioned dimensions)
at the National University of Singapore and then sent it to the
metrology laboratory at the Defense Science Organization
(Singapore Ministry ‘of Defense) for testing over the 2-5 GHz
frequency range. When plotted alongside each other in Fig. 3,
the measured and predicted results show, for most of the
frequency range, reasonably close agreement with each

'Readers can obtain a complimentary copy of the software code by
writing to the authors.
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Fig. 4. Performance of prototype coupler #2: w=51 mm, /=
15.7 mm, w’' = 7.8 mm, 4 = 2.3 mm, €, = 2.5 (a) Magnitudes of coupler’s
scattering coefficients:

lal: theory, VVV experiment;
[8]: ------- theory, + + + experiment;
|7 theory, X X X experiment;
|yl -—-— theory, ¢ oo experiment.

(b) Computed angular separations of g points [10] for coupler when
used as a six-port reflectometer [2] (the DUT in this instance being a
matched load):

——— arglq, /q3):
arglqs /qs);
--------- arg(gs /q,).

other—within +0.05 for magnitude and +10° for phase. It
would thus appear that, similar to what Cullen et al. [7] and
Judah er al. [2] had observed, neglecting the effects of the
curvature of the central ring line does not seriously impair the
utility of our computer model.

In [2], Judah e al. demonstrated that, for the special case
when |y|=[8|=0 and |a| =|7]=1/v3, the symmetrical six-port
coupler should in principle be well suited for use as part of a
proposed six-port reflectometer setup. However, they did not
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proceed to predict how the resulting g points of the reflectome-
ter would have varied when the coupler’s scattering coefficients
departed from their design values. To check on this matter, we
present in Fig. 4 the scattering coefficients as well as the g-point
distribution (using the additional formulas derived in [10] for the
coupler when configured as a six-port reflectometer [2]) of
another design, prototype #2, for which w=5.1 mm, w' =
7.8 mm. [ =157 mm, A =23 mm, and €, = 2.5. Fig. 4(a) shows
that, of the four scattering coefficients, only |y| and |a] meet the
design specifications (ly[ < 0.1 and ia[—l/\/?<0.()5 over the
2.4-3.8 GHz frequency range). Nevertheless, the resulting ¢
points of Fig. 4(b) remain reasonably well spaced and the
reflectometer should thus be capable of satisfactory operation
over a 45% bandwidth.

IV. ConNcLusion

Instead of adopting other noneigenmode procedures (which
tend to produce long and unwieldy expressions for symmetrical
structures having more than, say, five ports), we have demon-
strated in the present analysis how the simple eigenmode ap-
proach can be utilized to develop a first-order model that yields
explicit formulas for predicting the performance characteristics
of the symmetrical six-port microstrip ring coupler. Tests con-
ducted on prototype couplers over the 2-5 GHz frequency
range indicate that the agreement between theory and experi-
ment is reasonably good (within +0.05 for magnitude and + 10°
for phase), thereby corroborating, for the range of parameter
settings used, the validity of the assumptions which have been
incorporated into the model.

As a final note, we wish to add that the theory outlined here
can, if suitably reformulated in general terms for a symmetrical
N-port microstrip coupler, also be extended in scope to include
cases where N > 6.
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Properties of TE-~TM Mode-Matching Techniques

Gian Guido Gentili

Abstract —A line integral formulation of TE-TM mode-matching
techniques for scattering problems in waveguides is described. The
procedure is convenient from a computational point of view when the
modes in the waveguides must be computed numerically. Some interest-
ing properties of TE-TM mode-matching techniques are then demon-
strated.

- 1. INTRODUCTION

In the analysis of scattering from waveguide discontinuities,
the mode-matching technique, whenever it can be applied, is by
far the most popular way to solve the problem. It has been used
to solve scattering problems in several different kinds of wave-
guides, such as the rectangular waveguide [1]-[5], the microstrip
line [9], the finline [13], and the circular waveguide (or coaxial
cable, see e.g. [18]). Scattering caused by the transition between
different kinds of waveguides has been dealt with too (see e.g.
[17]). Although several formulations can be used to represent
the fields at the discontinuity interface, the TE-TM field expan-
sion is the most general one when homogeneous waveguides
with perfectly conducting walls are considered. Such field ex-
pansion derives the tangential components of the electric and
magnetic fields from the longitudinal ones: the tangential com-
ponents of the fields are then matched at the discontinuity
interface, yielding a infinite system of linear equations. An
approximate solution of the system of equations is then found by
truncating the infinite series. Some properties of such approxi-
mate solution of the system of equations have been discussed in
[14] (e.g. the relative convergence problem).

This paper focuses on some general properties of TE-TM
field expansions in perfectly conducting waveguides when they
are matched at some arbitrarily shaped waveguide discontinuity.
It can be shown that the surface integrals resulting from match-
ing the tangential field components can almost always be ex-
pressed as line integrals along the boundary of the region over
which surface integration is carried out. Such reduction in the
dimensionality of the integration is convenient from a computa-
tional point of view when the modes in the waveguides must be
computed numerically. To be more specific, the line integral
formulation is best suited when the modes in the waveguides are
computed by techniques based on some' integral equation ex-
pressed on the boundary, since in that case the modal eigen-
functions are computed only on the boundary of the waveguide
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cross section. The application of the line integral formulation of
mode matching is then directly applicable, without the need for
a time-consuming computation of the eigenfunctif)ns at internal
points in the waveguide cross section. On the other hand, the
reduction to line integrals has pointed out an interesting prop-
erty of mode-matching techniques: some coefficients represent-
ing coupling between TE and TM modes are always null; i.e.,
such modes are uncoupled. Such phenomenon have been ob-
served in [2] and [17] for two particular cases (rectangular-to-
rectangular waveguide junction and rectangular-to-circular
waveguide junction). It will be shown here that it is quite
general and independent of the shape of the waveguide cross
section.

II. FORMULATION

Consider the scattering problem represented by the transition
between two arbitrarily shaped perfectly conducting walls wave-
guides (Fig. 1). Let S; be the cross section of guide 1, o, its
boundary, §, the cross section of guide 2, and o, its boundary.
Let then 2 =5, S, and C be its boundary.

Let E;, and H, be the transverse electric and magnetic
fields of the gemeric mode n in region I (with S; the cross
section of the related waveguide). Such tangential fields can be
expressed as the sum of two contributions: a TE field and a TM
field. They can be derived from the two longitudinal fields E.;,
and H,;, (z being the coordinate relative to the direction of
propagation, so that the z dependence of the fields is of the
type exp(F jBz)). By expanding the fields in the two waveguides
as sums of the modal fields multiplied by unknown coefficients,
one gets

Ng
Eymg = h (eitTE)n + eI?TE)n)VQDIn Xz (1
n
Ng
Hygy = h (eI+(TE)n - ef(TE)n)YI(TE)nV%n (2)
n
Ny
Eymvy = h (eFETM)n + eiTM)n)VlﬁIn 3)
n
Ny
Hyoruy = Y (C’IJ?TM)n - ef(TM)n)YI(TM)nV(//In X 2. 4
n
Here
YI(TE)n =p I(TE)n Jop
and

Yirmyn = @€/ Byt

Re[Byrry.J(Re[ Byrmy,]) being the propagation constant of the
nth TE(TM) mode. Also, 2 is the unit vector of the z axis, V is
the transverse gradient, w is the angular frequency, w is the
magnetic permeability of the medium (throughout this work
1= itg), and e is the dielectric constant. The modal series have
been truncated by retaining only a limited number of modes.
The unknown coefficients with suffixes “+” or “—" account for
a wave traveling toward + z (+) and a wave traveling toward
— z (—). The scalar functions ¢y, and ¢, are then the solu-
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