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First-Order Model of Symmetrical Six-Port

Microstrip Ring Coupler

S. P. Yeo and C. L. Lau

Abstract —This paper describes, in brief, how the simple eigenmode

approach can be utilized to develop a first-order model that yields
explicit ready-to-use formulas for predicting the performance character-

istics of a symmetrical six-port microstrip ring coupler. Prototype tests

condncted over the 2–5 GHz freqnency range show the agreement
between the predicted and measured values of the coupler’s scattering
coefficients to be within + 0,05 for magnitnde and + 10° for phase.

I. INTRODUCTION

The symmetrical sk-port junction (Fig. 1) has over the past

few years been attracting the attention of various researchers,

Riblet et al, [1] designed one for use as a five-way equal power
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Fig. 1. Symmetrical sixport microstrip ring coupler.

divider, while Judah et al. [2] and Yeo et al. [3] showed how it

could also be utilized in a six-port reflectometer setup,

Thus far, satisfactory models to predict the characteristics of

the stripline [1] and waveguide [4] versions of the symmetrical

six-port junction have been reported in the literature. Our

objective in this paper, therefore, is to extend the investigation

to include the analysis of the microstrip version. Actually, a

model of one such microstrip coupler has already been put

forward by Judah et al. [2]; however, their circuit topology is

more complicated than that of Fig, 1 because they inserted an

additional node at the hub of the structure (thereby rendering it,

for purposes of analysis, effectively a seven-port instead of a

six-port). In contrast, we chose to retain the original simplicity

of the ring layout in Fig. 1 so as to obviate the necessity of

performing a seven-port to six-port circuit reduction (as Judah

et al. [2] had to do).

IL THEORY

There are two approaches that we can take in the formulation

of our model: eigenmode or noneigenmode. The latter has the

problem of yielding rather long and unwieldy expressions, al-

though, as one referee has pointed out, it does offer flexibility

for studying nonsymmetries in the circuit. The method used in

this paper is based on the eigenmode approach since this, as has

been demonstrated in previous analyses of the symmetrical

~-port junctions [4]–[6], yields simple explicit formulas that can

be readily used for design work.

Assuming that the curvature of the central ring line can be

ignored (as Cullen et al. [7] and Judah et al. [2] did in their

analyses), we are able to represent the circuit connections be-

tween any three consecutive ports k – 1, k, k + 1 by the equiva-

lent transmission-line model of Fig. 2, where, for the mth

eigenmode,

()
mtr

L)k = v~_lexp — j—
3

()
mrr

=u~~lexp jY . (1)
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Fiz 2. Equivalent transmission-line model for any three consecutive
ports k – l,k, k +1.

An analysis of the circuit of Fig. 2 then yields the

expressions for the current components at node k:

i~=—
aexp(’%cos”rl

“=%[exw%cos””l

following

(2)

(3)

(4)

The combination of (2)–(4) thus permits us to derive the ei-

genadmittance (for the mth eigenmode) looking into any of the

six ports:

‘~=+{3[c0s(Y1-cOs”’’1+B}o‘5)
(Expressions for the phase constant P of the central ring line,

the length correction Al= 1 – 1’ for the distance between adja-

cent ports, the shunt susceptance jB present at the junction, the

turns ratio n: 1 of the transformer, and the characteristic admit-

tances YO and Yj of the central ring line and the six arm lines,

respectively, can be found in standard references, such as [8].)

F~omA (52, we can compute four distinct eigenadmittances,

PO,Yl, Y2, Y3 (corresponding to the m = 0,1,2,3 eigenmodes sup-

ported by the symmetrical six-port structure of Fig. 1), and

thereafter obtain the scattering matrix of the coupler:

s=

1(3 Taaya

atirsa!y

via the following formulas [1]:

7=; (Ao+2& +2&+&)

~=; (Ao–2A1+2A2– A3)

1
a=#Ao+A1-A2-A3)

1
8=; (AO– A1– A2+A3)

where the eigenreflection coefficients AM are given by

y~–~
Am=~ .form =0,1,2,3.

Y;+ ?m

(6)

(7)

(8)

(9)

(lo)

(11)

(As an aside, we would like to mention that, apart from the

computation of the coupler’s scattering coefficients, another

lrmzgnitude
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Fig. 3. Performance of prototype coupler #1: w = 5.0 mm, I! =

17.5 mm, w’ = 6.4 mm, h = 2.3 mm, c,= 2.5. (a) Magnitudes of coupler’s
scattering coefficients:

Ial: ——- theory, VVV experiment;
1$1:------- theoV, + + + experiment;
Irl: — theory, X X X experiment;
Iy 1:---- theory, 00. experiment.

(b) Phase differences between coupler’s transmission coefficients:
arg (8 / a ): --- theory, + + + experiment;
arg (T / a): —— theory, x x x experiment.

possible application of the eigenadmittances generated from (5)

is in’ the computation of the coupler’s equivalent admittance [9]

using the formula derived by Riblet et al. in [1].)

III. RESULTS

The model developed in Section II (with dispersion effect [8]

taken into account) is then implemented as a self-contained

software package (written in Turbo Pascal Version 5.0)1 for

running on the I13M PC. Fig. 3 presents a typical plot of the

frequency variations of y, a, 8, and r for the following paramet-

er settings: w =: 5.0 mm, w’ = 6.4 mm, 1 = 17.5 mm, h = 2.3 mm,

and e, = 2.5. To verify the accuracy of the computed results, we

fabricated prototype #1 (using the aforementioned dimensions)

at the National University of Singapore and then sent it to the

metrology laboratory at the Defense Science Organization

(Singapore Ministry ‘of Defense) for testing over the 2-5 GHz
frequency range. When plotted alongside each other in Fig. 3,

the measured and predicted results show, for most of the

frequency range, reasonably close agreement with each

*Readers can obtain a complimentary copy of the software code by
writing to the authors.
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Fig. 4. Performance of prototype coupler #2: w = 5.1 mm, 1 =

15.7 mm, w’ = 7.8 mm, h = 2.3 mm, c,= 2.5 (a) Magnitudes of coupler’s
scattering coefficients:

1.1: — theory, VVV experiment;
181:------- theory, + + + experiment;
17/:— theory, x x x experiment;
Iyl: ---- theory, 0.0 experiment.

(b) Computed angular separations of q points [10] for coupler when

used as a six-port reflectometer [2] (the DUT in this instance being a
matched load):

– arg(gl /q3):
— arghj /95);

argLz5 /911

other—within ~ 0.05 for magnitude and + 10° for phase. It

would thus appear that, similar to what Cullen et al. [7] and

Judah et al. [2] had observed, neglecting the effects of the

curvature of the central ring line does not seriously impair the

utility of our computer model.

In [2], Judah et al. demonstrated that, for the special case

when Iyl = 181= O and Iwl = Irl = l/fi, the symmetrical six-port

coupler should in principle be well suited for use as part of a

proposed six-port reflectometer setup. However, they did not

proceed to predict how the resulting q points of the reflectome-

ter would have varied when the coupler’s scattering coefficients

departed from their design values. To check on this matter, we

present in Fig. 4 the scattering coefficients as well as the q-point

distribution (using the additional formulas derived in [10] for the

coupler when configured as a six-port reflectometer [2]) of

another design, prototype #2, for which w = 5.1 mm, w’ =

7.8 mm, 1= 15.7 mm, h = 2.3 mm, and c, = 2.5. Fig. 4(a) shows

that, of the four scattering coefficients, only Iy I and la I meet the

design specifications ( Iyl <0.1 and la I– l/fi <0.05 over the
2,4-3.8 GHz frequency range). Nevertheless, the resulting g

points of Fig. 4(b) remain reasonably well spaced and the

reflectometer should thus be capable of satisfactory operation

over a 45 VO bandwidth.

IV. CONCLUSION

Instead of adopting other noneigenmode procedures (which

tend to produce long and unwieldy expressions for symmetrical

structures having more than, say, five ports), we have demon-

strated in the present analysis how the simple eigenmode ap-

proach can be utilized to develop a first-order model that yields

explicit formulas for predicting the performance characteristics

of the symmetrical six-port microstrip ring coupler. Tests con-

ducted on prototype couplers over the 2–5 GHz frequency

range indicate that the agreement between theory and experi-

ment is reasonably good (within +0.05 for magnitude and ~ 10°

for phase), thereby corroborating, for the range of parameter

settings used, the validity of the assumptions which have been

incorporated into the model.

As a final note, we wish to add that the theory outlined here

can, if suitably reformulated in general terms for a symmetrical

N-port microstrip coupler, also be extended in scope to include

cases where N >6.
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Properties of TE-TM Mode-Matching Techniques

Gian Guido Gentili

Abstract —A line integral formulation of TE-TM mode-matching
techniques for scattering problems in waveguides is described. The
procedure is convenient from a computational point of view when the
modes in the wavegnides must be computed numerically. Some interest-

ing properties of TE–TM mode-matching techniques are then demon-

strated.

I. INTRODUCTION

In the analysis of scattering from waveguide discontinuities,

the mode-matching technique, whenever it can be applied, is by

far the most popular way to solve the problem. It has been used

to solve scattering problems in several different kinds of wave-

guides, such as the rectangular waveguide [1]–[5], the microstrip

line [9], the finline [13], and the circular waveguide (or coaxial

cable, see e.g. [18]). Scattering caused by the transition between

different kinds of waveguides has been dealt with too (see e.g.

[17]). Although several formulations can be used to represent

the fields at the discontinuity interface, the TE–TM field expan-

sion is the most general one when homogeneous waveguides

with perfectly conducting walls are considered. Such field ex-

pansion derives the tangential components of the electric and

magnetic fields from the longitudinal ones: the tangential com-

ponents of the fields are then matched at the discontinuity

interface, yielding a infinite system of linear equations. An

approximate solution of the system of equations is then found by

truncating the infinite series. Some properties of such approxi-

mate solution of the system of equations have been discussed in

[14] (e.g. the relative convergence problem).

This paper focuses on some general properties of TE-TM

field expansions in perfectly conducting waveguides when they

are matched at some arbitrarily shaped waveguide discontinuity.

It can be shown that the surface integrals resulting from match-

ing the tangential field components can almost always be ex-

pressed as line integrals along the boundary of the region over

which surface integration is carried out. Such reduction in the

dimensionality of the integration is convenient from a computa-

tional point of view when the modes in the waveguides must be

computed numerically. To be more specific, the line integral

formulation is best suited when the modes in the waveguides are

computed by techniques based on some integral equation ex-

pressed on the boundary, since in that case the modal eigen-

functions are computed only on the boundary of the waveguide

Manuscript received January 3, 1991; revised April 17, 1991.
The author is with the Dipartimento di Electtronica, Politecnico di

Milano, Piazza Leonard da Vinci, 32-20133 Milan, Italy.
IEEE Log Number 9101648.

cross section. The application of the line integral formulation of

mode matching is then directly applicable, without the need for

a time-consuming computation of the eigenfuncti&s at internal

points in the waveguide cross section. On the other hand, the

reduction to line integrals has pointed out an interesting prop-

erty of mode-matching techniques: some coefficients represent-

ing coupling between TE and TM modes are always null; i.e.,

such modes are uncoupled. Such phenomenon have been ob-

served in [2] and [17] for two particular cases (rectangular-to-

rectangular waveguide junction and rectangular-to-circular

waveguide junction). It will be shown here that it is quite

general and independent of the shape of the waveguide cross

section.

II. FORMULATION

Consider the scattering problem represented by the transition

between two arbitrarily shaped perfectly conducting walls wave-

gttides (Fig. 1). ILet S1 be the cross section of guide 1, UI its

boundary, S2 the cross section of guide 2, and rz its boundary.

Let then 0 = SI n S2 and C be its boundary.

Let ,131n and lYIn be the transverse electric and magnetic

fields of the generic mode n in region I (with SI the cross

section of the related waveguide). Such tangential fields can be

expressed as the sum of two contributions: a TE field and a TM

field. They can be derived from the two longitudinal fields ,ZZI.

and H= ~~ (z being the coordinate relative to the direction of

propagation, so that the z dependence of the fields is of the

type exp ( T j~z)). By expanding the fields in the two waveguides

as sums of the modal fields multiplied by unknown coefficients,

one gets

Here

iind

(2)

(3)

Nhi

‘I(TM)s ~ (eLTM)n – el;TM)n )Y1(TM)~V@lm X ,?. (4)
n

Y I(TE)n = BI(TEjj7 /~P

Y l(TM)ri = ~~/B1(Th4)H t

Re [pI(TE),,](Re [BI(T~).l~ being the Propagation constant of the

Mth TE(TM) mode, Also, 2 is the unit vector of the z axis, V is
the transverse gradient, aI is the angular frequency, K is the

magnetic permeability of the medium (throughout this work

,U = u ~), and c is the dielectric constant, The modal series have
been truncated by retaining only a limited number of modes.

‘The unknown coefficients with suffixes “+” or “–” account for

a wave travelin~ toward + z ( + ) and a wave traveling toward
— z (–). The scalar functions q 1. and @l. are then the solu-
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